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1. Motivation
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Impacts of the next big EQ?
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There are over 500 faults which have
been mapped in NZ

These are the 'larger' faults, in that
they leave a surface expression, there

are many other (smaller) faults that
do not
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2. Empirical ground motion models

Regression models are developed from the
recorded ground motions

Year: 1980's

Records: 230

Models:
Variables: 2

Regression constants: 5

30 yrs

—>

Year: 2010's
Records: 21,000

Models:
Variables: 12
Regression constants: 29+

1+
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Physics-based ground motion
prediction

 The numerical solution of the wave equation is quite
straightforward in concept ...... but the following
complexities have stifled progress until recently:
a. Source: Complex rupture in space and time
b. Path: Wave propagation in 3D heterogeneous media
c. Site: Nonlinear response (incl liguefaction)

Significant recent progress because of the rapid growth of
supercomputing capacities: The need to simulate frequencies
up to 10Hz requires very small computational mesh sizes —>
requiring the worlds fastest supercomputers



B.A. Bradley

a. Source: complexity — 2011 Tohoku
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b. Path: Complex 3D

geology - Canterbury

s g i .

e Water wells Pt , ' WAl Y o v o U oA N%;Z S N
Petroleum wells ‘ql‘{, 7 f‘ iy - I A > ‘ — \

8 Surface wave testing] Y 8 7t FX

— Seismic reflection b I i, 1

3000 -2000 -1000 0 1000
Miocene depth (m) [mean sea level]




WP e, Site: Soil field measurements
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3. Ground motion simulations of the Canterbury
earthquakes

videos at: https://sites.google.com/site/
brendonabradley/videos



Mw7.1 4 Sept 2010 Earthquake

Beavan 1Fa}ult, Stoch Slip, Chch 1D VM

1=0.00 SeC simulation on UC's

Oxford
O A

——

Rél@stork

I N
25 km

0 10 20 30 40 50 60 70 80
ground velocity (cm/s)

BlueGeneP supercomputer

e 'Relatively' small runs

e ~8,000 core hours per
simulation [25% of BGP
capacity for 4 hours]

* Multiple runs
performed to
understand model
sensitivity
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Blender rendering
(collab w Nick Young, UA eResearch)




Mw6.2 22 Feb 2011 Earthquake
Beavan 1Fa|1u|t, Stoch Slip, v1.64 t=0.00 sec
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Blender rendering
(collab w Nick Young, UA eResearch)
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4. Simulation validation and model
Improvement
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Observed vs Simulated velocity (4 Sept 2010)
(qualitative validation)
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Spectral accelerations vs Distance (4 Sept 2010)

(qualitative validation)
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Quantitative overall bias (22 Feb 2011)
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Spatial variation of bias

Mw6.2 22 Feb 2011 Earthquake
Beavan 1Fault, Stoch Slip, v1.02
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Mw6.2 22 Feb 2011 Earthquake
Beavan 1Fault, Stoch Slip, v1.64
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Bias at specific locations
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Formal improvement through inversion

We are currently undertaking inversion of 350+ earthquakes of M3.5-4.5 to improve our model
of the Canterbury region using adjoint inversion methods
(requires 700+ 'runs'/iteration with an expectation to perform 10-20 iterations).
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5. What can such simulations tell us
about the future?

* Alpine fault can produce M, 8+ earthquakes

, ~40°
* Last end-to-end rupture in

1717 (298yrs ago); 26 major -
events inferred over past
8000 years (~310yrs/event)  -42°1

e We actually know very little =%

about what severity of ground "
shaking the Alpine Fault will

cause in Canterbury and the  _45°!
wider South Island
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Mw?7.9 Alpine Fault Earthquake
_ Testl,Chch 1D VM, : , t=0.00 sec

Simulation on UC's
BlueGeneP supercomputer
) G - A * All 8192 compute cores
=41 1 [0 el sonfeiy * For 4 full days
syl R hheim *  ~800,000 core hours
(largest run on this
machine)

* We are about to re-
commence these analyses
A UUNSACS) with our improved crustal
_aa ] ‘ A0 R models; we are also
AL Ve porting our codes over to
NIWA's Fitzroy machine
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QuakeCoRE interaction with NeSI

(further details on Clare et al. poster at this meeting)

Local soil
conditions

/ \ / Current workflow requires

Fault rupture Velocity model

workflow to enable model pre-/

post-processing to be user- \\ ///

independent

excessive use of adhoc codes for:
Known fault Ground motion simulation . . .
database (on NesD) (a) preparation of simulation
/ input models; and
E (b) utilization of outputs by 3
Tim i Time series (stored enSees analysis b; 1
(storedeosnell:I?SI) \ on local maE:ht?ne) S:rthquake engyineerz parhes
In collaboration with NeSI/UCHPC
. . Known fault y Local soil
we have been streamlining our database Fault rupture Velocity model et

Ground motion simulation
(on NeSI) Output database
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6. Domain-specific challenges
* Computation:

— Currently 100m grid spacing to give fmax=1Hz
calculations. To get to f=10Hz will require 1000x
the amount of computation (Moore's law & Intel's
focus on energy efficiency over speed)

— Considering many EQ sources and statistical
uncertainties in order to utilize such simulations in
a risk analysis framework

* Data:

— Archival of, and access to, simulation data/
outputs performed in a research environment for
3" parties (easier to solve than the computation
problem)
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Thank you for your attention
https://sites.google.com/site/brendonabradley/
brendon.bradley@canterbury.ac.nz
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