
New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Acceleration made easy - Speeding up your science
codes with (fairly) little effort

Wolfgang Hayek
eResearch NZ 2016

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

1. What accelerators are and when to use them

2. Accelerating Python with PyOpenCL/PyCUDA

3. Accelerating C, C++, and Fortran with OpenACC

4. Summary

Overview

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

What accelerators are and when to use them

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

• Accelerators: co-processors that perform some
functions faster than CPUs

• Applications include

 Signal processing, Cryptography, Graphics

 Scientific computing

• We will focus on scientific computing with GPUs

• Ongoing NeSI project: “Exploring tsunami and
flooding code speed-up using GPU processing”

Accelerators

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

• CPU – mostly serial computation (each step in a
program is executed in order)

• GPU – highly parallel computation (many steps
executed at the same time)

• Accelerators only useful for parallel compute-
dominated applications (not, e.g., disk I/O)

Using
accelerators

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure 6

Typical Accelerator Computing (today!)

Accelerator

GPU

Accelerator Memory

Host

CPU

Host Memory

Hard Drive

Data Flow

Data needs to travel – this takes time and adds complexity

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Accelerating Python with PyOpenCL/PyCUDA

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

• Python: popular multi-purpose computer language

• PyOpenCL/PyCUDA: extension packages for
accelerators

• Full access to OpenCL/CUDA APIs

• We will focus on PyOpenCL Array syntax

• Same code runs on laptop and on HPC (e.g. NeSI
Pan cluster, cloud, …)

PyOpenCL/
PyCUDA

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

PyOpenCL/
PyCUDA

NumPy PyOpenCL Arrays

Program loads data into “data_np”

Program initialises accelerator

Copy data to accelerator

data_cl = cla.to_device(queue, data_np)

Compute part – entirely on accelerator!

x_cl = 2 * data_cl

result_cl = 1.4 * clm.exp(-x_cl * x_cl)

Copy data back to host memory

result_np = result_cl.get()

Rest of program

Program loads data into “data_np”

Compute part

x_np = 2 * data_np

result_np = 1.4 * np.exp(-x_np * x_np)

Rest of program

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

PyOpenCL/
PyCUDA

• Mandelbrot is idealised case - perfect match for
GPUs due to inherent parallelism

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

PyOpenCL/
PyCUDA

Mandelbrot Performance

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

PyOpenCL/
PyCUDA

• Good speed-up possible with PyOpenCL Arrays,
but need large work sizes

• Hand-coded OpenCL is more efficient - just as with
NumPy vs. C/Fortran

• NeSI can help with getting you started!

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Accelerating C, C++, and Fortran with OpenACC

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

• Various ways to use accelerators in C, C++ and
Fortran: scientific libraries, CUDA, OpenCL, …

• OpenACC: compiler directives for “offloading”
loops, main code stays on CPU

• Useful for existing code (NeSI tsunami project)

OpenACC

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

OpenACC C C with OpenACC

/* Program loads data into “data”

Program initialises accelerator */

/* Offload compute part to accelerator */

#pragma acc kernels \

copy(data[0:n], result[0:n])

for (int i = 0; i < n; i++) {

float x;

x = 2.0 * data[i];

result[i] = 1.4 * exp(-x*x);

}

/* Rest of program */

/* Program loads data into “data” */

/* Compute part */

for (int i = 0; i < n; i++) {

float x;

x = 2.0 * data[i];

result[i] = 1.4 * exp(-x*x);

}

/* Rest of program */

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

NeSI Tsunami Project

• Basilisk (www.basilisk.fr)

• Shallow Water simulation of tsunami wave

• Model by Emily Lane, NIWA

OpenACC

http://www.basilisk.fr/

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Basilisk Performance (preliminary!)OpenACC

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

• Good speed-ups, but data locality can be complex

• Hardware knowledge needed for optimisations

• NeSI can help with getting you started!

OpenACC

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Summary

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

• PyOpenCL/PyCUDA and OpenACC: easy ways to
use accelerators

• Workloads need to be sufficiently large

• Some algorithms may need to be changed

• Talk to us if you would like to try!

Summary

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

NeSI at eResearch NZ 2016
Tuesday 11:15
(Queenstown)

NeSI Update Nick Jones

Tuesday 11:45
(Remarkables)

Growing NZ’s Researcher’s
Computing Capability

Georgina Rae & John
Rugis

Tuesday 14:30
(Queenstown)

An HPC Implementation of
the Finite Element Method

John Rugis

Tuesday 16:00
(Queenstown)

The NeSI National Platform
Framework

Michael Uddstrom

Tuesday 16:30
(Queenstown)

Early Experiences with Cloud
Bursting

Jordi Blasco

Tuesday 16:30
(Remarkables)

NeSI – NZGL Alliance Dan Sun & Nic Mair

Tuesday 17:00
(Queenstown)

Acceleration Made Easy Wolfgang Hayek

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Thanks for
listening!

