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What accelerators are and when to use them



New Zealand  eScience InfrastructureNew Zealand  eScience Infrastructure

• Accelerators: co-processors that perform some 
functions faster than CPUs

• Applications include

 Signal processing, Cryptography, Graphics

 Scientific computing

• We will focus on scientific computing with GPUs

• Ongoing NeSI project: “Exploring tsunami and 
flooding code speed-up using GPU processing”

Accelerators
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• CPU – mostly serial computation (each step in a 
program is executed in order)

• GPU – highly parallel computation (many steps 
executed at the same time)

• Accelerators only useful for parallel compute-
dominated applications (not, e.g., disk I/O)

Using 
accelerators
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Typical Accelerator Computing (today!)

Accelerator

GPU

Accelerator Memory

Host

CPU

Host Memory

Hard Drive

Data Flow

Data needs to travel – this takes time and adds complexity
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Accelerating Python with PyOpenCL/PyCUDA
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• Python: popular multi-purpose computer language

• PyOpenCL/PyCUDA: extension packages for 
accelerators

• Full access to OpenCL/CUDA APIs

• We will focus on PyOpenCL Array syntax

• Same code runs on laptop and on HPC (e.g. NeSI 
Pan cluster, cloud, …)

PyOpenCL/
PyCUDA
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PyOpenCL/
PyCUDA

NumPy PyOpenCL Arrays

# Program loads data into “data_np”

# Program initialises accelerator

# Copy data to accelerator

data_cl = cla.to_device(queue, data_np)

# Compute part – entirely on accelerator!

x_cl = 2 * data_cl

result_cl = 1.4 * clm.exp(-x_cl * x_cl)

# Copy data back to host memory

result_np = result_cl.get()

# Rest of program

# Program loads data into “data_np”

# Compute part

x_np = 2 * data_np

result_np = 1.4 * np.exp(-x_np * x_np)

# Rest of program
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PyOpenCL/
PyCUDA

• Mandelbrot is idealised case - perfect match for 
GPUs due to inherent parallelism
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PyOpenCL/
PyCUDA

Mandelbrot Performance
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PyOpenCL/
PyCUDA

• Good speed-up possible with PyOpenCL Arrays, 
but need large work sizes

• Hand-coded OpenCL is more efficient - just as with 
NumPy vs. C/Fortran

• NeSI can help with getting you started!
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Accelerating C, C++, and Fortran with OpenACC
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• Various ways to use accelerators in C, C++ and 
Fortran: scientific libraries, CUDA, OpenCL, …

• OpenACC: compiler directives for “offloading” 
loops, main code stays on CPU

• Useful for existing code (NeSI tsunami project)

OpenACC
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OpenACC C C with OpenACC

/* Program loads data into “data”

Program initialises accelerator */

/* Offload compute part to accelerator */

#pragma acc kernels \

copy(data[0:n], result[0:n])

for (int i = 0; i < n; i++) {

float x;

x = 2.0 * data[i];

result[i] = 1.4 * exp(-x*x);

}

/* Rest of program */

/* Program loads data into “data” */

/* Compute part */

for (int i = 0; i < n; i++) {

float x;

x = 2.0 * data[i];

result[i] = 1.4 * exp(-x*x);

}

/* Rest of program */



New Zealand  eScience InfrastructureNew Zealand  eScience Infrastructure

NeSI Tsunami Project

• Basilisk (www.basilisk.fr)

• Shallow Water simulation of tsunami wave

• Model by Emily Lane, NIWA

OpenACC

http://www.basilisk.fr/
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Basilisk Performance (preliminary!)OpenACC
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• Good speed-ups, but data locality can be complex

• Hardware knowledge needed for optimisations

• NeSI can help with getting you started!

OpenACC
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Summary
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• PyOpenCL/PyCUDA and OpenACC: easy ways to 
use accelerators

• Workloads need to be sufficiently large

• Some algorithms may need to be changed

• Talk to us if you would like to try!

Summary
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NeSI at eResearch NZ 2016
Tuesday 11:15 
(Queenstown)

NeSI Update Nick Jones

Tuesday 11:45 
(Remarkables)

Growing NZ’s Researcher’s 
Computing Capability 

Georgina Rae & John 
Rugis

Tuesday 14:30 
(Queenstown)

An HPC Implementation of 
the Finite Element Method 

John Rugis

Tuesday 16:00 
(Queenstown)

The NeSI National Platform 
Framework

Michael Uddstrom

Tuesday 16:30 
(Queenstown)

Early Experiences with Cloud 
Bursting 

Jordi Blasco

Tuesday 16:30 
(Remarkables)

NeSI – NZGL Alliance Dan Sun & Nic Mair

Tuesday 17:00 
(Queenstown)

Acceleration Made Easy Wolfgang Hayek
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Thanks for 
listening!


