Acceleration made easy - Speeding up your science
codes with (fairly) little effort

% NeS‘ Wolfgang Hayek

eResearch NZ 2016

New Zealand eScience Infrastructure

Overview #NeS|

What accelerators are and when to use them
Accelerating Python with PyOpenCL/PyCUDA
Accelerating C, C++, and Fortran with OpenACC
summary

N .

New Zealand eScience Infrastructure

What accelerators are and when to use them

New Zealand eScience Infrastructure

Accelerators

New Zealand eScience Infrastructure

Accelerators: co-processors that perform some
functions faster than CPUs

Applications include
= Signal processing, Cryptography, Graphics
= Scientific computing
We will focus on scientific computing with GPUs

Ongoing NeSl project: “Exploring tsunami and
flooding code speed-up using GPU processing”

Using e CPU - mostly serial computation (each stepin a
accelerators program is executed in order)

« GPU - highly parallel computation (many steps
executed at the same time)

» Accelerators only useful for parallel compute-
dominated applications (not, e.g., disk |/O)

New Zealand eScience Infrastructure

Typical Accelerator Computing (today!)

Accelerator

Host Memory Accelerator Memory

Hard Drive

Data needs to travel - this takes time and adds complexity

New Zealand eScience Infrastructure

Accelerating Python with PyOpenCL/PyCUDA

New Zealand eScience Infrastructure

PyOpenCL/ * Python: popular multi-purpose computer language
PyCUDA

 PyOpenCL/PyCUDA: extension packages for
accelerators

* Full access to OpenCL/CUDA APIs
* We will focus on PyOpenCL Array syntax

« Same code runs on laptop and on HPC (e.g. NeSl|
Pan cluster, cloud, ...)

New Zealand eScience Infrastructure

PyOpenCL/
PyCUDA

New Zealand eScience Infrastructure

NumPy

PyOpenCL Arrays

Program loads data into “data_np’

Compute part
x_np=2*data np
result np=1.4"*np.exp(-x_np *x_np)

Rest of program

Program loads data into “data_np’
Program initialises accelerator

Copy data to accelerator
data cl = cla.to_device(queue, data np)

Compute part - entirely on accelerator!
x_cl =2 *data_cl

result cl=1.4" clm.exp(-x_cl *x_cl)

Copy data back to host memory
result_np = result_cl.get()

Rest of program

PyOpenCL/
PyCUDA

 Mandelbrot is idealised case - perfect match for
GPUs due to inherent parallelism

PyOpenCL/ Mandelbrot Performance
PyCUDA

10000 - Total Execution Time for 3000 Iterations
—a— NumPy (Core i5)
1000 - .
--m--PyOpenCL Array (HD Graphics)
-=-m=-PyOpenCL Array (Tesla K40) _-a
100 { -®- Pure OpenCL (HD Graphics) -~ __--7"
~-m- Pure OpenCL (Teslak40) _~— __.---7"" _-n
= |\ ———
g v e e S
e R =
L« e -
...... -l
......................=-'—“"’.
0.1 { ______ e
...................... .-.....................................--
0.01 T T T T T 1
64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096

Image Resolution

New Zealand eScience Infrastructure

PyOpenCL/ * Good speed-up possible with PyOpenCL Arrays,
PyCUDA but need large work sizes

 Hand-coded OpenCL is more efficient - just as with
NumPy vs. C/Fortran

* NeSl can help with getting you started!

New Zealand eScience Infrastructure

N@Sl Accelerating C, C++, and Fortran with OpenACC

New Zealand eScience
Infrastructure

New Zealand eScience Infrastructure

OpenACC

New Zealand eScience Infrastructure

Various ways to use accelerators in C, C++ and
Fortran: scientific libraries, CUDA, OpenCL, ...

OpenACC: compiler directives for “offloading”
loops, main code stays on CPU

Useful for existing code (NeSI tsunami project)

OpenACC

New Zealand eScience Infrastructure

C

C with OpenACC

/* Program loads data into “data” */

/* Compute part */

for (inti=0;i<n;i++){
float x;
x =2.0*datalil;
resulti] = 1.4 * exp(-x*x);

J

/* Rest of program */

/* Program loads datainto “data”
Program initialises accelerator ¥/

/* Offload compute part to accelerator */
#pragma acc kernels\
copy(data[O:n], result[O:n])
for (inti=0;i<n;i++){
float x;
x = 2.0 *datalil;
result]i] = 1.4 " exp(-x*x);

J

/* Rest of program ¥/

NeS| Tsunami Project

e Basilisk (www.basilisk.fr)
e Shallow Water simulation of tsunami wave
 Model by Emily Lane, NIWA

http://www.basilisk.fr/

OpenACC

New Zealand eScience Infrastructure

Basilisk Performance (preliminary!)

100 A

Wallclock Time [min]
'_L
o
|

Single Core Xeon Haswell Four Cores Xeon Haswell
Setup

GPU (Tesla K40)

Speedup

OpenACC « Good speed-ups, but data locality can be complex
« Hardware knowledge needed for optimisations
« NeS| can help with getting you started!

New Zealand eScience Infrastructure

NSl Summary

New Zealand eScience

Infrastructure

New Zealand eScience Infrastructure

Summary o PyOpenCL/PyCUDA and OpenACC: easy ways to
use accelerators

* Workloads need to be sufficiently large
« Some algorithms may need to be changed
« Talktousifyouwould like to try!

New Zealand eScience Infrastructure

NeS| at eResearch NZ 2016

Tuesday 11:15 NeSI Update Nick Jones

(Queenstown)

Tuesday 11:45 Growing NZ's Researcher’s Georgina Rae & John

(Remarkables) Computing Capability Rugis
Tuesday 14:30 An HPC Implementation of John Rugis
(Queenstown) the Finite Element Method

Tuesday 16:00 The NeSI National Platform Michael Uddstrom
(Queenstown) Framework

Tuesday 16:30 Early Experiences with Cloud Jordi Blasco
(Queenstown) Bursting

Tuesday 16:30 NeSI - NZGL Alliance Dan Sun & Nic Mair

(Remarkables)

Tuesday 17:00 Acceleration Made Easy Wolfgang Hayek

(Queenstown)

New Zealand eScience Infrastructure

